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Introduction
6G and Internet of Things (IoT) networks will require a high 
level of security, intelligent traffic control to enhance Quality of 
Experience (QoE) and Quality of Service (QoS), and reduced 
computational requirements due to the diverse hardware and 
deployment scenarios [1]. To better address these require-
ments, 6G necessitates data-driven dynamic network config-
urations, which Artificial Intelligence (AI) services control in 
real-time. The 6G requirements for devices, in terms of connec-
tivity, latency, bandwidth, reliability, and services, are diverse. 
This implies that 6G mission-critical requirements (e.g., Extreme 
Ultra Reliable Low Latency Communication (URLLC), end-to-
end QoS, spectrum efficiency, high connection density, energy 
efficiency, dependability, security, etc.) and related applications 
[1] will likely need to replace the prior one-size-fits-all configu-
rations and architectures with network disaggregated architec-
tures (as 6G is based on 5G, the user plane is separate from 
the control plane.) To address these requirements, independent 
hardware solutions, latency-specific control loops, and service 
chains (a service chain refers to a set of protocols, slices, and 
features) where features can be selectively added or removed 
via an AI as a Service (AIaaS) paradigm on a per-device basis 
will be necessitated. Compared to 5G, where Mobile Network 
Operators (MNOs) defined the requirements, in 6G, in part 
due to high density and short-range deployments, new players 
will drive the specific system requirements and services; for IoT, 
this implies cost-reduced and energy-efficient deployments. To 
enable service chains, softwarization and virtualization of net-
work functions and open interfaces will be essential. 

One approach to 6G is 6G Network in a box [2] (6G-NIB), 
where the essential network components are self-contained 
such that network coverage in traditional no-service cover-
age areas becomes possible, i.e., 6G-NIB enables truly ubiqui-

tous networking across numerous interfaces. NIB comes in a 
multitude of low-cost flavors, such as ISP-NIB, Virtual-NIB, and 
LTE-NIB, depending on the required deployment. Unlike tradi-
tional cellular networks, which are designed for larger region-
wide deployments, NIB is designed for localized deployments. 
Another approach to 6G is space-air-ground integrated net-
works (SAGINs) [3], which addresses Quality of Service (QoS) 
for a multitude of emerging 6G services (latency and/or reliabil-
ity) via seamlessly integrating terrestrial, aerial, and satellite net-
works using agile microservices and edge intelligence. Finally, 
the approach we propose is for 6G networks to be based on 
Open Radio Access Network (O-RAN); O-RAN is open-stan-
dard. Via open-interfaces and function virtualization, O-RAN 
transforms fixed network architectures, such as 5G, into flexi-
ble dynamic deployments [4]. Multi-vendor components and 
3rd party applications can utilize the open-standard interfaces 
to build O-RAN networks that can interoperate with different 
deployment configurations [5] and offer custom solutions.

Compared to 5G, the main entities introduced by O-RAN 
are RAN Intelligent Controllers (RICs). RICs can enable AI on 
the network, where Machine Learning (ML) can improve system 
responsiveness and maintenance, such as via dynamic spectrum 
sharing, network slices, and Physical layer (PHY) configura-
tions [6]. By dividing the RIC into multiple layers, based on the 
latency requirements, customized and efficient RIC applications 
(APPs) can be developed to meet the specific needs of the 
service(s) being deployed via custom policies. O-RAN’s RIC is 
divided into three layers, the Non-Real Time (Non-RT) RIC, the 
Near-RT RIC, and the RT-RIC. In terms of policy implementa-
tion, long-term policies are directed by the Non-RT RIC’s rAPPs, 
implemented by the Near-RT RIC’s xAPPS, and executed by the 
RT-RIC’s zAPPs [6].

When considering AI on the network, RICs and Multi-access 
Edge Computing (MEC) serve two distinct yet complementary 
purposes. RICs offer ML-based management of control plane 
signaling, such as User Equipment (UE) connection metrics, 
while MECs offer ML-based models to manage user plane sig-
naling. Through the addition of MEC to O-RAN, more powerful 
and efficient detection models can be implemented and work 
in concert with the RICs and the RAN. Due to the volume of 
users, limited computation power, and need to quickly process 
control plane signaling, lightweight ML models such as weak 
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learners (Linear Regression, Random Forest, 
Support Vector Machine, Multi-layer Percep-
tron, etc.) and ensemble learners (ensemble 
learners are comprised of multiple weak learn-
ers) are best targeted for RIC r/x/zAPPs. More 
complex models designed for user plane data, 
such as Deep Learning (DL) models, Convolu-
tional Neural Networks (CNNs), and Federated 
Learning (FL), are best targeted for MEC servers 
that have higher computing power.

Each RIC and MEC controls a subset of the 
RAN components via separate control loops 
(each RIC layer and control loop offers a dif-
ferent latency. A hierarchy of RICs offers more 
effi  cient, targeted to a specifi c latency, easier to 
construct ML models and solutions). In addition 
to the standard O-RAN control loops, i.e., Non-
RT RIC, Near-RT RIC, and RT-RIC, we consider a 
yet-to-be-discussed fourth control loop, the MEC 
control loop. The fourth control loop enables UEs 
to communicate indirectly with the Near-RT RIC. 
In addition, the fourth loop enables the Near-RT 
RIC to manage and share resources with multi-
ple MECs. By utilizing the fourth control loop, a 
UE’s communication with the O-RAN’s Native-ML 
can eff ect changes on their network confi guration 
and indirectly utilize RAN-controlled resources via the MEC. 

Current O-RAN designs do not emphasize cooperative 
multi-component ML models and O-RAN’s synergy with MEC 
nor analyze why all four control loops and split-plane ML mod-
els are necessitated from an end-to-end behavior standpoint. 
The insight we gain is that no one monolithic ML model can 
suffi  ciently handle a high number of users in a resource-limited 
environment under tight latency constraints; rather, ML models 
must be designed for specifi c applications while considering an 
overall cooperative design between each model.

This article analyzes the need for three RIC closed control 
loops, a MEC closed control loop, and why the ML models are 
split-plane (user-plane (UP) ML models are separable from the 
control-plane ML models). Our contributions are:
• We present an O-RAN-based architecture that supports 

multi-component cooperative AI models via split-plane and mul-
tiple closed control loops involving the O-RAN, MEC, and UE.

• We analyze our proposed system’s end-to-end behavior and 
how it addresses 6G’s mission-critical requirements.

• We present multiple applications and empirical test-bed-based 
results demonstrating the effi  cacy of the proposed architecture.
We present an envisioned 6G compatible O-RAN architecture 

based on O-RAN E-Release. Then we present several AI applica-
tions utilizing O-RAN and MEC-based ML models and discuss the 
end-to-end behavior of malicious application detection using a 
custom xAPP we developed. After which, we present a couple of 
applications using a hybrid ML model where the UE ML model 
needs to communicate with the O-RAN and/or MEC ML models to 
change network confi gurations. Finally, we present our conclusion.

o-rAn ArchItecture
In recent years, O-RAN has gained popularity in, and support 
from, both academia and industry [6]. As O-RAN already address-
es many of 6G’s requirements, its architecture [7] can be con-
sidered as a reference basis for 6G. Figure 1 shows the network 
architecture (for latency purposes, O-RAN splits the user plane 
from the control plane). Note: Even though O-RAN is compatible 
with both 4G and 5G networks, some applications are only com-
patible with 5G, such as dynamic Resource Block (RB) geometry.

summAry of o-rAn components And InterfAces
Service Management and Orchestration: The Service Manage-

ment and Orchestration (SMO) uses the O1 interface to manage 
and monitor all O-RAN-connected components and services. 

Open Network Automation Platform: The Open Network 
Automation Platform (ONAP) enables policy-driven orchestra-
tion and automation of physical and virtual network functions 
for services in 5G+.

Non-RT RIC: The Non-RT RIC deploys rAPPS to perform ML. 
rAPPS can control and optimize RAN elements and resources 
via the O1 interface. In addition, rAPPS can determine policies. 
The A1 interface is used to gather information from the Near-
RT RIC and send policy-related decisions to the Near-RT RIC to 
enforce. The Near-RT RIC executes said policies via its xAPPs 
(per the xAPP’s results, each policy is evaluated and condition-
ally performed. The Non-RT RIC’s rAPP monitors each xAPP’s 
eff ect on the system to determine if continued policy execution 
is required. Either MNOs or 3rd parties may design and deploy 
rAPPs, thus enabling customized policies.

Near-RT RIC: The Near-RT RIC uses the active ML model 
and data provided by the Non-RT RIC to determine if and 
how to execute a policy via an xAPP. Based on the decision, 
the Near-RT RIC uses the E2 interface to communicate with 
the RAN and MEC via the E2 nodes (connected elements are 
the MEC platform, O-eNB, O-RAN Centralized Unit (O-CU), 
O-RAN Distributed Unit (O-DU) and the O-RAN Radio Unit 
(O-RU). In addition, the E2 interface is utilized by each Near-RT 
RIC to collect Near-RT information about the attached UEs and 
cells. The connection status of each of the E2 node-connect-
ed elements and the attached UEs is stored in a Shared Data 
Layer (SDL) database, which may be queried by any xAPP. 
Either MNOs or 3rd parties may design and deploy xAPPs, thus 
enabling customized service chains and network settings.

A1 interface: The A1 interface connects the Non-RT RIC to the 
Near-RT RIC. It is used for policy management and data transfer 
(only information which will assist in model training is transferred). 

E2 Interface: The E2 interface connects the Near-RT RIC 
with the E2 nodes as the interfaces/components are separa-
ble, and both RAN and function virtualization are simplified, 
effectively lowering investment costs while increasing system 
flexibility. The O-CU, O-DU, and O-RU control different net-
work resources, i.e., connectivity, media access, and protocol 
functionality, respectively.

O1: The O1 interface enables the management of all O-RAN 
components associated with O-RAN network functions.

Fronthaul Interface: The Fronthaul (FHI) interface connects 
the O-DU and O-RU to the RT-RIC. The FHI provides control and 
user plane synchronization and management functionalities.

Figure 1. O-RAN Architecture with MEC and multi-cell connectivity. One or more 
O-RUs may be connected to an O-DU via the fronthaul interface (FHI). One or 
more O-DU may be present (one Near-RT-RIC per O-DU). Each O-RU resides in 
an O-eNB. O-RAN architecture is based on 3GPP New Radio (NR) option 7.2X 
split (PHY-low, PHY-High) for the RU and option 2 splits (control plane - user 
plane split) for the CU [7].
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O-eNB: The O-eNB terminates the O1, S1, E2, and FHI (indi-
rectly NG (core), X2, and Xn) interfaces as well as the relevant 
radio protocol stacks. The O-eNB acts as a communication 
point between the O-RAN system and the mobile devices via 
the Uu interface. As such, the O-eNB eff ectively enables real-
time data collection by each RIC.

mec And rIc ml synergy
Current O-RAN designs focus on RAN and cloud connectivity. 
The inherent limitations placed on ML by the RIC are two-fold: 
1. The RIC handles control plane data. Thus analysis of user-

plane data is separate.
2. RIC-based ML APPs are limited by the computing power avail-

able; thus, resource-intensive ML models remain prohibitive.
Even though cloud computing may off er suffi  cient resources to 
run resource-intensive ML models, it suff ers from higher latency.

By combining MEC with RIC, O-RAN can not only support 
user-plane ML models, yet O-RAN can also utilize resource-in-
tensive ML models by partitioning the ML model into a hybrid 
ML model, where the RIC-based (control plane) ML models 
interact with the MEC-based (user plane) ML models, via the 
E2 and NG interfaces, to provide a richer set of low latency 
services not previously possible via the RIC alone.

AI-enAbled ApplIcAtIons feedbAck loops
Our proposed O-RAN solution utilizes four ML control loops to 
meet the diverse set of service requirements, as shown in Fig. 2. 
O-RAN Release E (5G-based) provides three diff erent RICs, each 
of which targets a diff erent latency granularity: Non-RT RIC (> 1s), 
Near-RT RIC (10ms  1s), and RT RIC (< 10ms). The 5G-based 
O-RAN architecture’s latency requirements are achieved via three 
control loops that handle three diff erent latencies. To enable 6G 
support, we also consider a non-RIC control loop which enables 
the UE to communicate indirectly with the Near-RT RIC via the 
MEC. The control loops are summarized below:

Non-RT RIC Control Loop: The Non-RT RIC control loop 
consists of the Non-RT RIC and the Near-RT RIC. It is responsive 
to second-level granularity latency operations via the A1 and O1 
interfaces. Long-term policy decisions are typically handled by 
this loop. By utilizing network slicing, diff erentiated services can 

be provided. The Non-RT RIC can monitor each attached O-eNB 
via the O1 interface. Based on the Non-RT RIC’s rAPP results, 
policies are updated and monitored via the Near-RT RIC’s A1 
interface. The Near-RT RIC’s xAPPs implement the policies.

Near-RT RIC Control Loop: The Near-RT RIC control loop 
consists of the Near-RT RIC and the RAN components (O-eNB, 
O-DU, O-CU). The Near-RT RIC is targeted for ten milliseconds 
to one-second latency operations and uses the E2 interface to 
manage the attached E2 nodes. The Near-RT RIC is suitable for 
implementing near-term policies, such as resource management 
and load balancing, via xAPPs.

RT RIC Control Loop: The RT RIC control loop consists of the 
O-RU and the O-DU. The RT RIC control loop uses the FHI inter-
face to manage radio parameters and status. The RT RIC enables 
AI control of lower-layer RAN functions requiring sub-millisecond 
control, such as the PHY layer, interference management, modu-
lation and code settings, and diverse adaptive operating environ-
ments. The real-time policies are executed via zAPPs.

MEC Control Loop: The MEC control loop consists of the Near-
RT RIC and the MEC server. The Near-RT RIC is monitored and 
managed by the MEC via the E2 interface, i.e., the MEC ML model 
determines policies for the Near-RT RIC to implement. Although 
the MEC is not part of the 5G O-RAN architecture [5], we note 
it is essential to consider MEC for 6G as RIC ML solutions are lim-
ited in the complexity they can achieve as often RAN computing 
power is limited. Thus RIC ML solutions are best targeted toward 
control-plane problems, such as load balancing. Yet when we 
consider user-plane problems, the complexity of ML models can 
increase dramatically, e.g., DL and CNN solutions often required 
for computer vision applications necessitate high-end computing 
solutions that include a high-end Central Processing Unit (CPU) 
and possibly a Graphical Processing Unit, which is not available on 
the RIC. An example application we explore later in this article is 
monitoring network traffi  c and UEs via a malware detection appli-
cation. When an infected device is detected, it is isolated.

The MEC control loop may also be utilized for hybrid ML 
models (UE and MEC) as necessitated by applications such as 
FL. In FL, UEs execute their local model, which must coordinate 
with the MEC to update the global model (often the central FL 
model uses DL or CNN), which is then pushed out to the UEs 
so they can seek out improved solutions. 

securIty concerns And countermeAsures
As O-RAN is an open-standard system, developers and telecom-
munication providers can access its source code and develop 
new features. Unfortunately, this exposes O-RAN’s components 
and interfaces.

The main threats O-RAN encounters can be categorized as:
• Openness threats: O-RAN suff ers from weak verifi cation of 

data source identity [8], thus leading to potentially malicious 
data sources and components. 

• Data threats: By analyzing network traffi  c, illicit packets can 
be constructed to infl uence the data and parameters used by 
the ML models via the E2 interface [8].

• Flow threats: UE-originating and external network-originating 
attacks, such as DNS server (located at the network edge), 
Distributed Denial of Service (DDoS), and malware attacks, 
can impact the RAN’s and network’s performance.

The aforementioned threats can be addressed by combining 
data and behavior pattern analysis with RIC xAPPs (control 
plane) and MEC-based ML APPs (user plane). Thus to ensure 
O-RAN integrity and stability, RIC and MEC-based intelligent 
system monitoring (for rogue components) and network intru-
sion detection (for interfaces) are necessitated.

o-rAn AssIsted serVIces
Mission Critical O-RAN assisted services is deployed using informa-
tion gathered from the UE (in this section, we assume the UE does 
not have an ML model). The collected information is interpreted 
by and acted on by either the RIC and/or the MEC ML models.

Figure 2. Proposed O-RAN architecture with control loops and 
protocol stacks. Note that the outer control loops overlap 
with the inner control loops, as they need to interact. As 
network disaggregation is a requirement of 6G, split-plane 
protocols are by design.
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trAffIc steerIng And locAlIZed Qos
For this application, we consider the Mission Critical require-
ment of addressing End-to-End QoS in dense networks [1] via 
V2X and massive Machine Type Communication (mMTC). 
Vehicles within the vicinity of a traffic accident consider it a 
high priority, while those further away do not. With the increas-
ing number of connected vehicles, the impact due to bursty 
network traffic originating from the scene of an accident is 
region-wide and can cause a corresponding network QoS deg-
radation impacting all vehicles. 

By considering the network traffic type, origin, and destina-
tion of each network flow, the QoS requirements of each net-
work flow can be dynamically modified, i.e., we can mitigate 
the impact on region-wide network QoS by utilizing multiple 
QoS settings per network fl ow. This can be achieved by steering 
high-priority network traffi  c to local resources for immediate dis-
tribution, then forwarding it as normal-priority network traffi  c to 
regional resources [9], as shown in Fig. 3. 

To implement this scheme, in addition to dual connectivity with 
the regional BS and the local RSU, a MEC server is necessitated 
to dynamically modify the QoS settings of the forwarded network 
fl ows to normal priority. This type of dual connectivity and dynamic 
QoS modifi cation is not supported in traditional cellular networks. 
Yet with O-RAN, the locations of the transmitters and receivers 
can be gathered by the xAPP via the MEC control loop, the MEC 
ML model, and the Near-RT control loop the QoS 
of the network traffic can be dynamically modi-
fi ed (the O-CU performs QoS modifi cation).

proActIVe cell AssocIAtIon
And uplInk sIngle freQuency network

For this application, we consider the Mission 
Critical requirement of addressing Extreme 
URLLC [1], such as in critical mMTC. URLLC 
remains a daunting challenge for wireless net-
works. The seemingly conflicting goals of low 
latency and high reliability can be addressed 
via open-loop feedback-less protocols and pro-
active multi-cell association [10]. In proactive 
cell association a UE may associate with one or 
more cells, as shown in Fig. 4; as the number 
of cells UE associates with increases, assuming 
suffi  cient wireless resources, the outage prob-
ability decreases as both Selective Combining 
and Multi-User Detection increase the number 
of network paths which may be decoded.

The dilemma in proactive multi-cell associ-
ation comes from the risk of an unacceptable 
outage probability and how Selective Combin-
ing (SC) and Multi-User Detection (MUD) are 
handled via a multi-cell anchor. As proactive 
communication uses the same RB among mul-
tiple BS, an uplink Single Frequency Network 
(SFN) must be established. 

Traditional 5G, per standard, lacks the requisite hardware 
confi guration for multi-cell MUD and selective combining. Con-
sidering that multiple O-eNB PHYs must synchronize to process 
the received signal, O-RAN’s function virtualization can eff ec-
tively support multi-cell MUD and SC via a hardware anchor 
by utilizing the Near RT RIC and RT RIC control loops and via 
custom proactive cell xAPPs and zAPPs.

dynAmIc spectrum shArIng
For this application, we consider the Mission Critical require-
ment of addressing End-to-End QoS in dense networks [1] via 
delay-tolerant networks for IoT. A primary UE’s (a primary UE 
is guaranteed access to the entire spectrum) wireless spectrum, 
while scarce, is often underutilized. While long-term underuti-

lized spectrum, i.e., whitespace, can be repurposed to usable 
spectrum by either using cognitive radio or resold to second-
ary UEs (secondary UEs do not have guaranteed access to 
the entire spectrum), the same cannot be said for short-term 
underutilized spectrum as it would require the network to be 
reconfi gured nearly every radio frame. If the transmit power of 
the BS is reduced while ensuring that the primary downlink UEs 
(inner UE and outer UE) can still receive their data at the same 
modulation and coding scheme, then the spare power-domain 
spectrum (diff erence from the BS’s max transmit power to the 
two primary UEs’ power shown in Fig. 5) can be repurposed via 
power domain Non-Orthogonal Multiple-Access (NOMA)  as a 
delay tolerant network [11] used by a third UE (virtual UE). 

This scheme is not normally possible in traditional, standard cel-
lular networks as NOMA whitespace delay tolerant networks are 

Figure 3. Localized QoS: High-priority to-be-broadcast QoS 
fl ows are transmitted to the Micro-cell/Road Side Unit (RSU), 
which acts as a localized resource, and re-broadcast within 
the Micro-cell. At the same time, the high-priority traffi  c is 
forwarded to the Macro-cell/Base Station (BS) for regional 
broadcast as a normal priority QoS fl ow.

Macro-cell
(O-eNB)

Micro-cell
(O-eNB)

Vehicle 
(Normal)

Vehicle 
(High)

Association

Forwarded 
QoS Flow
Transmitted
QoS Flow

Fig. 3. Localized QoS: High-priority to-be-broadcast QoS flows are transmitted to the Micro-cell / Road Side Unit (RSU), which acts as a localized resource,
and re-broadcast within the Micro-cell. At the same time, the high-priority traffic is forwarded to the Macro-cell / Base Station (BS) for regional broadcast
as a normal priority QoS flow.

Figure 4. Proactive Cell Association: Each UE connects to one or more BS(s), 
dependent on the Signal-to-Interference-Plus-Noise Ratio (SINR). The set of 
signals received by each BS comprising the uplink Single Frequency Network 
(SFN) is forwarded to the anchor node for Multi-User Detection and Selective 
Combining. By associating with multiple BSs, the number of network paths a 
UE’s signal transmits on increases, as does the UE’s maximum reliability.
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not commercially deployed. Via O-RAN’s Near-RT RIC and RT RIC 
control loops, the necessary PHY (dynamic power control for the 
primary and secondary UEs) and Medium Access Control (MAC) 
(computation of the spare RB capacity and RB assignment) can be 
supported via corresponding xAPPs and zAPPS.

Iot gAtewAy mAlwAre detectIon
For this application, we consider the Mission Critical require-
ment of network security as it is essential to ensure a network’s 
reliability [1] in dependable mission-critical networks. IoT devic-
es tend to lack malware detection capabilities. Thus to protect 
IoT devices against threats, such as Botnets like Mirai,1 a light-
weight [12] (due to the high number of potential IoT devic-
es) Network Intrusion Detection System (NIDS) is required 
for each IoT device/IoT gateway. The corresponding malware 
detection ML model would be deployed as a per-device service 
on the attached MEC server so it can quickly isolate infected 
IoT devices and block incoming internet infections.

Traditional cellular networks do not support MEC-initiated 
device isolation. With O-RAN near-RT RIC and the MEC control 
loops, infected devices and incoming malware can quickly be 
isolated via a MEC ML model and an xAPP. 

rIc-bAsed Iot mAlwAre detectIon
In RIC-based IoT Malware detection, we deploy executable 
fi le monitors on each IoT device. All executable fi le signatures, 
extracted via static analysis, are streamed from each IoT device 
to a malicious software detection xAPP on the Near-RT RIC that 
detects suspicious executable fi les using pre-trained ML models. 

For malware detection, we focused on Mirai attacks; in gen-
eral, Mirai attacks are independent of O-RAN and can attack 
any IoT-related environment. For our dataset, we used an open-
source Mirai botnet tool to perform a telnet scan and sent the 
network traffi  c through our MEC server, which captured network 
traffi  c. After which, we labeled the dataset network fl ows as Mirai 

or benign. The dataset we used has 53,390 Mirai 
samples and 54,000 benign samples.

The dataset’s feature values were extracted 
by static analysis and then trained by a Support 
Vector Machine (SVM). When the Near-RT RIC 
receives the binary file signatures from each 
IoT device, the xAPP analyzes them. The xAPP 
informs the O-CU and the MEC to isolate the 
suspected IoT device(s) when malicious pro-
grams are detected. Through experiment deploy-
ment of our proposed O-RAN with the MEC 
system, the detection rate and defense against 
Mirai malware achieved an accuracy of 98.83%, 
which can eff ectively protect IoT devices.

end-to-end mAlIcIous
ApplIcAtIon detectIon AnAlysIs

Malicious attackers can penetrate the vulnerabil-
ities of device systems via weak passwords. By 
using cracked passwords, a malicious user can 
obtain access to the device and then send mali-
cious programs through curl or wget to infect the 
device. Fortunately, with the help of the O-RAN 

and the MEC server, an xAPP can collect information from the 
control plane about the UE, while the MEC collects information 
from the user plane about the UE’s data flows to the core net-
work. By monitoring the network traffi  c, not only can the end-to-
end transmission status immediately be known, but also an ML 
model on the xAPP and MEC can be used to identify whether 
there are malicious programs and immediately inform the Near-RT 
RIC to block the infected UEs.

hybrId AIot o-rAn serVIces
Hybrid Artifi cial Intelligence of Things (AIoT) O-RAN services use 
separate ML models; one or more models are deployed on the 
IoT device, and one or more ML models are deployed on either 
the MEC and/or a RIC to achieve mission-critical objectives. 

Qos flow And rb lAtency mInImIZAtIon
For this application, we consider the Mission Critical require-
ment of addressing End-to-End QoS in industrial networks [1] 
via Industrial IoT (IIoT). In 5G the three most common RB 
geometries are: {0.25ms   720kHz, 0.5ms   360kHz, and 
1ms  180kHz} (each RB geometry corresponds to a diff erent 
RB latency.) In addition, in 5G, the RB geometry is inherently 
coupled to the QoS class/settings. A shortfall with this inher-
ent coupling is lower latency RBs are more susceptible to the 
eff ects of delay spread [13], as shown in Table 1. Consequently, 
for environments experiencing high delay spread, the QoS 
fl ow’s latency may increase (due to inter-symbol interference, 
RB capacity may decrease as a carrier’s delay spread increases.) 
A solution to decrease a QoS fl ow’s latency while not increas-
ing the RB latency more than necessary is to conditionally per-
form RB geometry migration, i.e., decouple the QoS fl ow’s QoS 
class from its RB geometry. 

By integrating ML, the UE can intelligently inform the base 
station as to which RB geometry would off er it the highest aver-
age bitrate while minimizing the RB’s latency. The Near-RT RIC 
and RT RIC, via UE feedback and the MEC, can dynamically 
modify the RB geometry in response to the UE’s input (UEs can-
not directly control radio confi gurations in O-RAN; thus MEC 
ML is required to notify the xAPP as to the change request.) 
After which, the BS can reallocate radio resources among the 
QoS fl ows.

Unfortunately, dynamic reconfi guration of the PHY and its RB 
geometry is not possible in 5G. Yet with O-RAN, the MEC, the 
Near-RT RIC, and the RT RIC, dynamic on-the-fl y, PHY reconfi g-
uration becomes possible via the MEC, Near-RT RIC, and RT RIC 
control loops via the MEC ML model, xAPPs, and zAPPs.

Figure 5. Assuming a two-layer Non-Orthogonal Multiple-Access (NOMA) scheme 
(left) (two UEs share an RB), it can be observed that if each UE’s (inner UE and 
outer UE) transmit power is decreased while maintaining the same modulation and 
coding scheme relative to the BS, then spare power for an additional UE becomes 
available (right). The spare power can then be repurposed as a Delay Tolerant 
Network for a delay-tolerant third virtual, located at the cell edge, UE to use. 
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Fig. 5. Assuming a two-layer Non-Orthogonal Multiple-Access (NOMA) scheme (left) (two UEs share an RB), it can be observed that if each UE’s (inner UE
and outer UE) transmit power is decreased while maintaining the same modulation and coding scheme relative to the BS, then spare power for an additional
UE becomes available (right). The spare power can then be repurposed as a Delay Tolerant Network for a delay-tolerant third virtual, located at the cell edge,
UE to use.

Table 1. RB Capacity when comparing RB Latency vs. Delay 
Spread: When the RB latency decreases, or the delay spread 
increases, the RB capacity potentially decreases.

RB Latency

Delay Spread 2.1s 1.1s 0.1s

Cyclic Prefi x Capacity (bits/RB)

Normal (1ms) 4.69s 248.1 321.6 933.2

Low (0.5ms) 2.34s 101.1 248.1 933.2

Very Low (0.25ms) 1.17s 25.6 101.1 933.2
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Intelligent Traffic Safety

For this application, we consider the Mission Critical require-
ment of addressing low latency [1] Vehicle-to-everything (V2X) 
via an Intelligent Traffic Safety application. With the popularity 
of smart devices increasing every day, pedestrians and driv-
ers are becoming more and more distracted. Thus there is an 
increasingly higher risk of traffic accidents. Computer vision can 
assist in the detection of distracted pedestrians and drivers and 
notify them and others around them of an impending accident. 
Unfortunately, there is no mechanism for 5G networks to notify 
both the drivers and the pedestrians without specialized soft-
ware being installed on either a UE or a vehicle. 

In [14], cameras placed at intersections act as sensors, which 
subsequently forward the captured video to a MEC server for 
analysis and message generation via a 3rd party application. 
Due to the high reaction time and the number of cameras, 
current MEC-hosted solutions are unlikely to expediently notify 
drivers and pedestrians. This is due to the requisite comput-
er vision models, such as MobileNetV2, which can exhaust 
the MEC server’s resources (the bandwidth required for the 
high-resolution video and/or the processing power required to 
process the video2) when a high number of cameras are con-
nected to a MEC server.

One possible solution is for a hybrid ML solution where 
camera-enabled AIoT devices process the video locally for 
potential accidents, then notify an ML model located on a MEC 
server (UEs and AIoT devices cannot directly send broadcast 
emergency messages) to transmit an emergency message via 
the Commercial Mobile Alert System (CMAS) (CMAS messages 
are received by all cellular users and do not require additional 
software.) For this system to be successfully deployed, the AIoT 
device must be able to indirectly inform the distracted driver/
pedestrian and others via low latency connectivity. The MEC 
control loop is required as the MEC ML model needs to gener-
ate CMAS messages via the Near-RT RIC’s xAPP.

Rogue Base Station Detection
Rogue BSs (RBSs) present a cybersecurity threat as they can 
convince victim UEs to connect to them via a stronger signal 
strength. RBSs can subsequently capture sensitive information 
the UEs provide and possibly deploy Denial of Service (DoS) 
attacks against UEs, causing them to disconnect from legiti-
mate BSs.

In [15], a UE deployed ML model detects RBSs. The ML 
model uses the stability of the received Synchronization Signal 
Block (SSB) signals of the connected and neighboring BSs; an 
RBS can have a stronger signal than the surrounding environ-
ment. If the suspect RBS signal has a higher signal strength 
than surrounding valid BSs and the sample standard deviation 
is too high, due to lower quality hardware, the user is alerted. 
The ML model is trained using an initial dataset collected from 
local telecom carriers. The O-eNB E2 interface conveys the 
RBS O-RAN xAPP-trained detection model to each UE (each 
UE uses the received ML model for RBS detection). Each UE 
provides signal strength updates to the O-eNB, which the xAPP 
uses to retrain the RBS detection model. We deployed our RBS 
system using a Next Unit of Computing (NUC) (Intel i5-6500 
3.2GHz with 24GB RAM), a UE (Google Pixel 3), and a serv-
er-class computer (i7-12700, 16GB RAM, 1TB storage) using 
Kubernetes to deploy O-RAN. For our official BSs, we used 
three local telecom carriers. Compared to Random Forest (RF) 
and K-nearest neighbors (KNN), we found that Support Vector 
Machine (SVM) offered our ML models the highest accuracy; 
all of our ML models achieved an accuracy of > 99%.

The synergy between the UE and the RIC demonstrates how 
O-RAN supports deployments of control plane ML models. 
When coupled with MEC, our proposed system offers a holistic 
approach to cybersecurity, where both the UE and MEC play 
an active role in the RIC’s behavior.

Conclusion
In this article, we presented several 6G requirements as they pertain 
to mission-critical IoT services. We presented O-RAN, its architecture, 
its interfaces, and how combining it with MEC offers a potential 
solution as it already meets many of 6G requirements by design 
(network disaggregation, open interfaces, AI, 5G compatible) and it 
enables support for hybrid ML models, which enable diverse deploy-
ments. We then introduced multiple applications where AI is only on 
the network (RIC and possibly MEC) and where AI is both on the UE 
and the network. We discussed system behavior and data flow via 
both malware and RBS detection applications and presented results 
from a O-RAN with MEC testbed and a O-RAN with UE testbed.
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FOOTNOTES
1 Mirai employs Distributed Denial of Service (DDoS) attacks on the victim.
2 The higher resolution the video is, the more accurate the detection. This comes 

at the cost of higher bandwidth consumption and higher processing demand.
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